

Model Checking of Workflow Schemas

C. Karamanolis1, D. Giannakopoulou2, J. Magee2, S. M. Wheater3
1 Hewlett-Packard Labs, christos@hpl.hp.com †

2 Dept. of Computing, Imperial College, {dg1,jnm}@doc.ic.ac.uk
3 Dept. of Computing Science, University of Newcastle, Stuart.Wheater@ncl.ac.uk

† The author was with the Dept. of Computing, Imperial College, when this work was done.

Abstract
Practical experience indicates that the definition of real-

world workflow applications is a complex and error-prone
process. Existing workflow management systems provide
the means, in the best case, for very primitive syntactic
verification, which is not enough to guarantee the overall
correctness and robustness of workflow applications. The
paper presents an approach for formal verification of
workflow schemas (definitions). Workflow behaviour is
modelled by means of an automata-based method, which
facilitates exhaustive compositional reachability analysis.
The workflow behaviour can then be analysed and checked
for safety and liveness properties. The model generation
and the analysis procedure are governed by well-defined
rules that can be fully automated. Therefore, the approach
is accessible by designers who are not experts in formal
methods.

1. Introduction

Workflow Management Systems provide automated
support for defining and controlling various activities
(tasks) associated with business processes [1, 2]. A
Workflow Schema is used to represent the structure of an
application in terms of tasks as well as temporal and data
dependencies between tasks. A Workflow Application (or
just Workflow) is executed by instantiating the
corresponding workflow schema [3].

The aim of providing automated support for business
processes is to reduce costs and flow times, to improve the
robustness of the process and to increase productivity and
quality of service [4, 5]. However, specifying a real-world
workflow schema is a complex manual process, which is
prone to errors. Incorrectly specified workflow schemas
result in erroneous workflow applications, which, in turn,
may cause problems in the organisation where they are
deployed. It is crucial to be able to verify the correctness of
a workflow schema before it becomes operational.

Many commercial workflow management systems
provide the means for some basic syntactic verification,

while a workflow schema is designed. They check, for
example, for the existence of inputs and outputs in task
specifications. However, more thorough and rigorous
analysis is required to ensure that the schema is correct [6,
7]. For instance, we need to be able to check that the
workflow eventually terminates, that there are no potential
deadlocks, or that a certain path of execution is possible.

Within the C3DS ESPRIT project, we address this issue
by integrating a workflow definition language with a model
checking method. The two methods were developed by
project partners, have been used extensively, and are
supported by powerful automated tools. The workflow
definition language has been recently incorporated in a
proposal for OMG’s “UML Profile for EDOC” RFP [8, 9].
The TRACTA model-checking approach follows a
compositional approach to exhaustive reachability analysis,
which has proved to scale well in real-world applications.
Analysis is performed in a fully automated way with the
LTSA toolkit [10]. Integration of the two involves a
mapping of the features of the workflow definition language
with features of FSP, the specification language of LTSA.
The mapping is governed by well-defined rules, which
allow for translations to be performed in an automatic way.
The FSP model extracted can be used for checking both
safety and liveness properties. Generic properties of
workflow schemas can be provided to users as predefined
options. Moreover, for users that are familiar with model
checking, the LTSA offers the flexibility of defining
additional (application-specific) properties, which can also
be automatically checked.

The remainder of this paper is organised as follows.
Section 2 provides an overview of the semantics of our
workflow definition notation, outlines the requirements for
verification in this context and introduces the TRACTA
approach. Sections 3 and 4 form the core of the paper.
Section 3 proposes a complete mapping of all workflow
schema elements to LTSs. Section 4 discusses the classes of
safety properties that can be verified using the TRACTA
techniques and the LTSA toolkit. In both sections, the
theoretical concepts are illustrated by means of a simple
example: a workflow managing travel arrangements. The

paper is concluded (section 5) with a critical discussion of
the presented approach and directions of future work.

2. Background

2.1. Defining Workflow Schemas

A workflow schema represents the structure of a business
process as a collection of tasks and their dependencies. A
task is an application-specific unit of activity. There can be
two types of dependencies between tasks: 1) notification
dependencies indicating temporal (causal) relations; 2)
dataflow dependencies indicating that a task requires some
input (data) from another task. In the following, we present
the principles of our notation for workflow schema
definition [11, 12].

A task can start in one of several initial states and can
terminate in one of several output states. Thus, a task is
modelled as having a set of input sets and a set of output
sets. Each such set consists of a (possibly empty) set of data
objects. In Figure 1, task t3 is represented as having three
input sets I1, I2, and I3, and two output sets O1 and O2.

t3

I1

I3

I2

O1

O2

s1

s2

s5

s6

s7

s8 t2

s3

n1

i3

i1

i2

i4

i5

t1

n2

s9

s4 o1

o2

o3

Figure 1. A workflow schema defining inter-task
dependencies.

The execution of a task is triggered by the availability of an
input set; only the first available input set will trigger the
task. For an input set to be available, all its dataflow and
notification dependencies must be satisfied. For example, in
Figure 1, input set I1 of task t3 requires three dependencies
to be satisfied: objects i1, i2 and i3 must become available
(dataflow dependencies). On the other hand, input set I2
requires three dependencies to be satisfied: object i4 must
become available and two notifications, n1 and n2, must be
signalled (notifications are modelled as data-less input
objects). All these dependencies (data and notification) are
logically AND’ed for an input set to be available. A given
input can be obtained from more than one source (e.g., two
for object i1 in set I1 of task t3), a logical OR of sources. If
multiple input sources become available simultaneously,
then one source is selected deterministically by the
execution environment.

The data dependencies of an input or output set are
represented by the data objects of that set. They are
therefore part of the definition of the task that contains the
set. On the other hand, notifications are causal dependencies
that depend on the context a task is instantiated in. The
number of incoming notifications of a set (that are logically
AND’ed with its data objects) and the alternative sources of
each of them (logically OR’ed inputs) are defined when a
task is interconnected with other tasks in some context.

To allow workflow applications to be designed in a
hierarchical way, tasks can be composite: collections of
instances of other, inter-dependent tasks. Therefore a task
can be either primitive (implemented by some application
service) or composite (consists of other primitive or
composite tasks). Figure 2 illustrates an example of a
composite task called TripOrganiser. The task provides
the schema definition for a workflow that makes trip
arrangements.

plan:
Planner

fs:
FlightSrc

cr:
CarRental

res:
Reservation

TripOrganiser

data

abort

itinerary

details

abort

details

data

details

details

abort

abort

flight

car

booking

abort

Figure 2. An example of workflow schema.

2.2. Requirements for workflow verification

Our experience with building large workflow systems
indicates that it is important for the designer to be able to
apply a rigorous verification method on the workflow
schema and argue formally about the correctness of the
resulting workflow applications. In this context, we have
identified a number of requirements to be satisfied by any
such verification method:

1. Have a solid mathematical foundation and allow for
rigorous and formal analysis of both safety and liveness
properties.

2. Perform exhaustive analysis at design-time (of the
workflow schema) as well as interactive simulation of
the workflow model.

3. Employ algorithms that are computationally efficient in
order to be applicable to real-world systems. These
algorithms should be supported by automated tools.

4. Follow a compositional approach in order to enable
incremental analysis while the system is designed and to
support re-use of specifications in multiple contexts.

5. Generate meaningful diagnostic information, in the form
of execution traces, to indicate potential errors to the
designer.

6. Use a comprehensible graphical representation for
humans and also an equivalent well-defined and space-
efficient formal notation for usage with the tools.

7. Be understandable and accessible by users who have no
special expertise in the area of modelling and formal
methods.

2.3. The TRACTA approach

The TRACTA approach has been extensively used for
modelling and analysing concurrent and distributed systems
[13, 14]. It is based on the use of Labelled Transition
Systems (LTS) for modelling the behaviour of system
components and for expressing system properties.

In order to integrate analysis with other activities of
software development, TRACTA uses a compositional
approach to modelling, by following the phases of
hierarchical system design. Behaviour is attached to the
software architecture by specifying a labelled transition
system for each primitive component in the hierarchy
(primitive is a system component which cannot be expanded
to sub-components, at least for the sake of analysis).
Following the terminology of traditional process algebras,
the LTS of a primitive component is equivalent to a finite-
state interacting process. An LTS contains all the reachable
states and executable transitions (triggered by actions) of a
process. The behaviour of composite system components is
defined as the composition of the LTSs of their constituent
components.

TRACTA exhaustively explores the reachable states of an
LTS, a technique known as reachability analysis. The main
disadvantage of this technique is state explosion. That is,
the exponential relation between the system state-space and
the number of its constituent components. TRACTA takes
advantage of the hierarchical structure of the system in
order to address this problem. As the system behaviour is
composed in a bottom-up manner, internal details (actions)
of a subsystem’s behaviour are hidden and the subsystem is
minimised, at intermediate stages of the analysis. In general,
only a subset of the actions in a subsystem’s LTS are of
interest to external systems (processes) that have to interact
with it.

Explicit representation of LTSs becomes impractical for
systems with more that a few states. For this reason,
TRACTA uses a simple process algebra notation called FSP
(stands for Finite State Process) to specify the behaviour of
components in a system [10]. FSP is not a different way of
modelling a system. It is a specification language with well-
defined semantics in terms of LTSs, which provides a
concise way for describing LTSs. Each FSP expression can
be mapped onto a finite LTS and vice versa.

TRACTA is supported by the LTSA software toolkit,
which provides for automatic composition, analysis,
minimisation, animation and graphical display of system
models expressed in FSP.

Primitive system components

Primitive system components are defined as finite-state
processes in FSP using action prefix “->”, choice “|” and
recursion. If x is an action and P a process, then (x->P)
describes a process that initially engages in the action x and
then behaves exactly as described in P. If x and y are
actions, then (x->P|y->Q) describes a process which
initially engages in either of the actions x or y, and the
subsequent behaviour is described by P or Q, respectively.
The definition of a primitive component may use an
auxiliary process (used as a means for modular FSP
specifications).

FSP uses an interface operator ‘@’, which specifies
(using prefix matching) the set of action labels which are
visible at the interface of the component and thus may be
shared (synchronisation points – used for interaction) with
other components. All other actions are “hidden” and will
appear as silent “τ” (tau) actions during analysis, if they do
not disappear during minimisation of the component. When
it is more concise to describe what actions are hidden rather
than which actions remain observable, the hiding operator
“\” may be used instead.

Composite system components

Composite-component processes are defined in terms of
other, non-auxiliary processes. Their identifiers are prefixed
with “||”. The process of a composite component does not
define additional behaviour; it is simply obtained as the
parallel composition of instances of the processes it is made
of. Process instances are denoted as “instance-name:type-
name”. The LTS of the instance is identical to that of the
type, with action labels prefixed with the instance name.
The instance name is not necessary if there is just one
instance of a process in a given context. Composition
expressions use parallel composition (||) together with
operators such as re-labelling (/), action hiding (\) or
interface (@). Communication occurs when interfaces are
bound together. It is modelled by means of synchronisation
of shared actions (the remaining actions are interleaved).
Actions that correspond to bound interfaces are re-labelled
to a common name in order to be synchronised when
behaviours are composed. Re-label specifications are of the
form “new-label/old-label”.

More details of the TRACTA approach and the FSP
specification language will become clear during the
discussion of workflow modelling and analysis, in the
following sections.

3. Workflow modelling

The model of each workflow schema consists of two
parts. A generic part, which models elements that are
common to every schema, such as input/output interfaces
and dataflow/notification dependencies between tasks. An
application-specific part, which models the actual tasks in

the schema and their inter-dependencies. In the rest of this
section, the models are presented in the form of FSP
specifications and, when appropriate, as LTS diagrams
produced by the LTSA tool.

3.1. Task interfaces

A task interacts with its environment through its
interface sets. Interface sets consist of zero or more data
objects (representing dataflow dependencies) and inbound
and outbound notifications (representing notification
dependencies). Interface sets model the common behaviour
of input and output sets of tasks.

�� An interface set is “available”, if all its dataflow and
notification dependencies are satisfied. When an
interface set is available, then all of its constituent
objects and outbound notifications are also available.

An interface set is modelled as the parallel composition
of a set of objects and inbound and outbound notifications.

An interface object can perform input and output
actions, reflecting the fact that the object receives and
outputs data, respectively. An interface becomes available
when all its constituent objects are available (a logical AND
operation). To enforce this, all objects in a set need to
synchronise on a common action available. An object can
only perform available after performing action input.
Therefore, the behaviour of an object with identification ID
(to uniquely identify it in the set) is modelled as follows:

Object (ID=1) = (input[ID] -> available

 -> output[ID] -> STOP).

Action available is also used to make sure that all
inbound notifications are received before an interface set
becomes available and also, that outbound notifications are
provided only after the interface set becomes available:

InNotification (ID=1) =

 (inNotify[ID] -> available -> STOP).

OutNotification =

 (available -> outNotify -> STOP).

An interface produces at most one outbound notification
(which can be bound to more than one task). Thus, no
identifier is required for this type of notifications. A process
Iface_Problem is introduced to model a transition to an
error state, if an interface instance is specified with more
than one outbound notification. If an interface set does not
contain any objects and has no notification dependencies, it
is unconditionally available, as modelled by process
Default.

Iface_Problem = (erroneous -> ERROR).

Default = (available -> STOP).

|| Iface (Objs=1, INotfs=1, ONotfs=1) =

 if (ONotfs >= 2) then

 Iface_Problem

 else (if (Objs > 0) then

 (forall [i:1..Objs] Object(i))

 || if (INotfs > 0) then

 (forall [i:1..INotfs]

 InNotification(i))

 || if (ONotfs > 0) then

 OutNotification

 || if (Objs==0 && INotfs==0

 && ONotfs==0) then

Default).

Figure 3 illustrates the LTS of an interface with one
object, one inbound and one outbound notification. The
interface becomes available only after both inNotify.1
and input.1 have been performed (in any order).
Following action available, actions output.1 and
outNotify can also be performed.

 input.1

inNotify.1 input.1 available

output.1

outNotify output.1

outNotify

inNotify.1

0 1 2 3 4 5 6 7

Figure 3: LTS of an interface set, with one object, one

in- and one out- notification.

3.2. Primitive tasks

The main entities of a primitive task that need to be
modelled are its interfaces, qualified as input and output
sets. They are modelled as interfaces that have zero
notifications. A task’s notification dependencies are context
dependent. In the general case, a task may be instantiated in
more than one context. Therefore, in our model,
notifications are added when a task is introduced in a
context (composite task).

minimal

|| AbsInputSet (Objs=1) =

 (Iface(Objs, 0, 0)) @ {available, input}.

minimal

|| AbsOutputSet (Objs=1) =

 (Iface(Objs, 0, 0)) @ {available, output}.

Information that is concerned with the outputs of input
sets and the inputs of output sets is encapsulated within the
model of primitive tasks. The only actions kept explicitly
visible are the ones prefixed with labels input and
available for input sets, and output and available for
output sets. The prefix minimal is added to the processes to
make sure that, during the generation of the model, our
tools will not only hide the actions that are not made visible,
but will also minimise the corresponding LTSs. The
advantage of minimisation is that it results in a more
compact but behaviourally equivalent model.

A primitive task’s behaviour is dictated by two rules:

�� The execution of a task starts as soon as one of its
input sets is available.

�� When the execution of a task completes, exactly one of
its output sets is available.

The two rules also capture the causal dependency
between a task’s input and output sets. This behaviour
pattern is common to all primitive tasks and is modelled by
the process AbsTaskImpl. This process also models the
fact that, even if more than one input set is available, just
one is selected by the internal task behaviour and exactly
one output is produced.

AbsTaskImpl (InSets=1, OutSets=1) =

 (in_ready[i:1..InSets] -> Execute),
Execute = (out_ready[o:1..OutSets] -> STOP).

A specific primitive task is then defined as the parallel
composition of instances of its input and output sets with an
instance of the above default implementation process. For
example, the primitive task Planner of Figure 2 is
modelled as shown below. The renaming reflects the
bindings of the task’s interfaces to AbsTaskImpl.

|| Planner = (AbsTaskImpl(1, 2)

 || data:AbsInputSet(1)
 || abort:AbsOutputSet(0)
 || details:AbsOutputSet(2)
)
 / { data.available/in_ready[1],
 abort.available/out_ready[1],
 details.available/out_ready[2] }.

3.3. Composite tasks

Composite tasks are constructed out of a number of
constituent task (sub-task) instances. Sub-tasks are either
primitive or composite tasks. A composite task is modelled
as the parallel composition of its interfaces (input/output
sets) and its constituent task instances. The data objects of a
composite task’s “external” interfaces are bound to data
objects of its constituent tasks. Moreover, there may be
notification dependencies between external and internal
(sub-task) interfaces.

However, incoming notification dependencies to the
composite’s own input sets and outgoing notification
dependencies from the composite’s output sets are not
known in this context. The aim is again to achieve
reusability of the composite task model. This principle is
captured in the specifications of the external input and
output sets of composite tasks: an InputSet is an interface
set with no input notifications and an OutputSet is an
interface set with no output notifications.

|| InputSet (Objs=1, ONotfs=1) =

 if (Objs ==0 && ONotfs==0) then

 Iface_Problem

 else (Iface(Objs, 0, ONotfs)).

|| OutputSet (Objs=1, INotfs=1) =

 if (Objs ==0 && INotfs==0) then

 Iface_Problem

 else (Iface(Objs, INotfs, 0)).

The conditional specification in the above model states
that: 1) an external input set must have at least one data
object or one outgoing notification; 2) an external output set
must have at least one data object or at least one incoming
notification. Process Iface_Problem is again used to
model a transition to an error state, if either of the above
conditions is not satisfied. For example, composite task
TripOrganiser (of Figure 2) has one external input and
two external output sets.

In the case of composite tasks, we have again to model
the fact that exactly one input set is selected even if more
than one is available and exactly one output set is enabled
when the task terminates. The later is modelled by processes
InSelector and OutSelector:

InSelector (InSets=1) =

 (in_ready[i:1..InSets] -> STOP).

OutSelector (OutSets=1)=

 (out_ready[i:1..OutSets] -> STOP).

These processes are used in the model of a composite
task to guarantee single set selection, as shown in Figure 4.
Unlike AbsTaskImpl (see section 3.2) these processes do
not impose the causal dependency between a task’s input
and output sets. For a composite task, this dependency must
be ensured by its internal implementation.

The main part of a composite task’s model consists of
the parallel composition of instances of its constituent tasks.
For example, task TripOrganiser consists of instances of
tasks Planner, FlightSrch, CarRental and
Reservation. Within the context of a composite task, a
task instance may need to receive and provide notifications
to its environment. Respectively, each sub-task instance
may need to be composed with processes of type
InNotification(ID) or OutNotification, that apply to
its interface sets. For example, TripOrganiser consists of
the following processes:

TripOrganiser

data

abort

itinerary

|| TripOrganiser = (

 InSelector(1) || OutSelector(2)
 || data:InputSet(1, 0)
 || abort:OutputSet(0, 1)
 || itinerary:OutputSet(1, 0)
 . . .
)/{ /* mappings to Selectors... */
 data.available/in_ready[1],
 abort.available/out_ready[1],
 itinerary.available/out_ready[2],...
}.

Figure 4. “External” input and output sets of a
composite component.

|| TripOrganiser = (. . .

 /* Constituent tasks ... */

 || plan:Planner
 || plan.abort:OutNotification
 || fs:FlightSrch
 || fs.abort:OutNotification
 || cr:CarRental
 || cr.abort:OutNotification
 || res:Reservation
 || res.abort:OutNotification
) / { . . . }.

In this example, the abort output sets of all sub-tasks
are sources for notification dependencies, in the context of
TripOrganiser. The naming of a notification process
ensures that its available action is synchronised with the
available action of the corresponding interface set. So, both
action available of interface abort for task
plan:Planner and action available of process
plan.abort:OutNotification are named plan.abort.
available, and thus need to be executed synchronously.

Finally, we need to model the bindings (expressing both
dataflow and notification dependencies) between interface
sets of composite tasks. As discussed, bindings are
modelled by means of appropriate re-labellings. For
example, the following captures dataflow dependencies
between external and internal interfaces for task
TripOrganiser:

data.output[1]/plan.data.input[1],
itinerary.input[1]/res.booking.output[1],...

The following captures dataflow dependencies between
internal interfaces for this task:

plan.details.output[1]/fs.details.input[1],

plan.details.output[2]/cr.details.input[1],
fs.flight.output[1]/res.details.input[1],
cr.car.output[1]/res.details.input[2], ...

TripOrganiser

abort
from
plan.abort

from
fs.abort

from
cr.abort

from
res.abort

|| TripOrganiser = (. . .)

/ { {plan.abort.outNotify,
 fs.abort.outNotify,
 cr.abort.outNotify,
 res.abort.outNotify}
 /abort.inNotify[1],

 ... }.

Figure 5. Modelling alternative input sources.

Note, that a given set or object may have more than one
alternative input sources. Availability of any of the input
sources (logical OR) is enough to enable the set or object,
accordingly. Alternative dependency sources are modelled
by means of relational relabelling. In our example, the
abort output set of TripOrganiser can be enabled by a
number of alternative sources: plan.abort, fs.abort,
cr.abort and res.abort. The relational relabelling of
Figure 5 states that a transition labelled
abort.inNotify[1] in the LTS of the “external” output
set abort is, now, performed when any of the other three
transitions occurs. The corresponding transformation of the
LTS is shown in Figure 6.

abort.inNotify[1]

plan.abort.outNotify
fs.abort.outNotify
cr.abort.outNotify
res.abort.outNotify

Figure 6. Relational relabelling used to model
alternative input sources.

4. Workflow analysis

This section describes how to customise generic LTS
analysis techniques for the domain of workflow systems.

4.1. Interactive simulation

A practical first step in checking a process is to simulate
its behaviour. Simulation is performed as a user-controlled
animation of the process. For composite processes, the LTS
of their behaviour is not composed first. The LTSs of the
components of the process are used to determine the current
state of the process, as well as which actions are enabled at
that state. The enabled actions are the “ticked” actions in
the “animator window”. When the user selects one of these
actions, the process transits to the corresponding next state.
The LTSA tool highlights the transitions on the LTS
diagrams of the component processes and presents the
corresponding system trace.

Figure 7 illustrates the interactive simulation of an
instance of task FlightSrch. We can see that after the
input to the task has been provided, its input set details
becomes available. Action details.available is
performed synchronously by processes details:

AbsInputSet(1) and AbsTaskImpl(1,2). Since this is a
primitive task, the outputs become available, as soon as an
input set is ready. In this case, when both actions
abort.available and flight.available are activated,
users may select which output to execute, according to the
scenario they wish to check.

Interactive simulation provides an intuitive way for the
system designers to experiment with different execution
scenarios. However, in the general case, interactive
simulation cannot establish the correctness of a real system,
since designers cannot simulate all its possible execution
scenarios. For that reason, techniques are required for
rigorously checking the models of workflow systems.

AbsTaskImpl(1,2)

details.available {abort, flight}.available

0 1 2

details:AbsInputSet(1)

details.input[1] details.available

0 1 2

Figure 7. Interactive simulation of task FlightSrch.

4.2. Properties

The model-checking techniques associated with TRACTA
can be used to check a workflow system exhaustively,
against both generic and domain-specific properties. When
a property is violated, our tools provide a counter-example,
an execution trace that violates the property.

Generic safety properties: deadlock

LTSA identifies deadlock states in the LTS of a process,
as states with no outgoing transitions. Reachability of such
states is checked by default for every process in the system.
This is so because LTSA has been mainly aimed at reactive
models that exhibit non-terminating behaviours. A typical
way of dealing with terminating executions is to add a
looping transition to each valid terminating state of a
system. For workflow tasks that are expected to terminate,
we provide a generic process called ValidTask-

Termination, which models the fact that a valid
terminating state of a task is one where some output of the
task has been enabled:

ValidTaskTermination = (out_enabled -> TERM),

TERM = (term_ok -> TERM).

When composed with a task that we wish to check for
deadlock, this process will add looping transitions to the
valid terminating states of the task. Thus, only real deadlock
states will have no outgoing transitions in the resulting LTS.

|| Complete_TripOrganiser =

 (TripOrganiser
 || organiser:ValidTaskTermination)
 /{ {abort.available,itinerary.available}
 /organiser.out_enabled}.

Here, an instance of ValidTaskTermination is
composed with an instance of TripOrganiser. Relational
relabelling is applied, so that the ValidTaskTermination
process transits to its terminating state whenever any one of
the outputs of TripOrganiser is enabled. Thus, valid
terminating states of process Complete_TripOrganiser
will have looping transitions labelled with action
organiser.term_ok. Indeed, the LTSA tool does not
detect any deadlocks in Complete_TripOrganiser:

States Composed: 76 Transitions: 136 in 0ms
 No deadlocks/errors

Assume that another version of the Planner was used in
the definition of TripOrganiser, as depicted in Figure 2.
In this case, Planner has two alternative output sets, one
for a flight booking and another for a car booking; now,
LTSA does detect a deadlock in process
Complete_TripOrganiser, as shown in the trace below.
Intuitively, the input set of the Reservation task will never
be enabled because its two objects indirectly depend on the
two alternative outputs of Planner.

Trace to DEADLOCK:

 data.input.1
 data.available
 data.output.1
 plan.data.available
 plan.details1.available
 plan.details1.output.1
 fs.details.available
 fs.flight.available
 fs.flight.output.1

plan:
Planner

fs:
FlightSrch

cr:
CarRental

res:
Reservation

TripOrganiser

Figure 8. Composite task with deadlock.

According to our approach, the fact that a task has no
deadlocks implies that it eventually terminates. Therefore,
checking safety in terms of absence of deadlock also
guarantees the main liveness property of termination, which
is of interest in this context. Specific liveness-checking
techniques are required [14], when the behaviour model of
the resources used for the execution of each primitive task
is also introduced in the system model. The analysis of
workflow schemas, in the presence of resource models, is an
ongoing research issue as discussed in section 5.

Other generic safety properties

In TRACTA, safety property violations are identified by
the reachability of a special "error state", represented as
state -1 in LTSs. The error state has special semantics [13].
First, it has no outgoing transitions; there is no meaning in
exploring a system after a safety violation has occurred.
Moreover, in the context of parallel composition, local
errors are propagated globally. That is, if any component of
a global state is an error state, then this global state is also
an error state. Safety properties are specified as FSP
primitive processes, whose definition is prefixed with the
keyword "property". A fundamental requirement to be
satisfied by all composite tasks is:

�� The output produced by a task causally depends on the
input that triggers the task execution.

It is expressed by means of a safety property:

property Task_InOut_Relation =

 (input_ready -> output_enable -> STOP).

This property has an alphabet of two actions:
{input_ready, output_enable}. It asserts that action
output_enable can occur only after input_ready and
none of these actions is allowed to occur again. In the

corresponding LTS, any trace from the property’s alphabet
that does not satisfy the property leads to the error state.
Property process Task_InOut_Relation is composed with
process Complete_TripOrganiser in order to check for
potential violations of the property in the non-blocking
version of this task. Figure 9 illustrates the LTS for property
Task_InOut_Relation, after relational relabelling is
applied. It specifies, that if any one of the input sets (just
data in our example) is enabled, then (and only then) any
one of the output sets may be enabled by the corresponding
task.

Task_InOut_Relation

data.available

{abort, itinerary}.available

data.available

{abort, itinerary}.available

{abort, data, itinerary}.available

-1 0 1 2

Figure 9. LTS of property Task_InOut_Relation.

|| Check_InOut_TripOrganiser =

 (Complete_TripOrganiser
 || Task_InOut_Relation)
 / { data.available / input_ready,
 {abort.available, itinerary.available}
 / output_enable }.

Another typical requirement for any workflow schema is:

�� For each task, there must exist at least one execution of
the workflow where this task is triggered.

To check this for some task T, we introduce a property
PathsToSubtask to the model, which states that no input
set of T ever becomes ready. If LTSA returns a
counterexample, it means that indeed, there exists some
execution where T is triggered, as desired. If LTSA detects
no violations, it means that T never plays any role in the
context of the specific workflow.

property PathsToSubtask = STOP + {reachable}.

Here, action reachable (explicitly added to the alphabet
of the property) expresses the fact that a task is triggered. In
the case of a task, reachable is relationally relabelled to
the set of ready actions corresponding to the task's input
sets. For example, we proceed as follows to check that task
res:Reservation is triggered in at least one execution of
Complete_TripOrganiser:

|| ExistPathsToPlan =

 (Complete_TripOrganiser || PathsToSubtask)
 / {res.details.available/reachable}.

The LTSA tool returns the following result:

Trace to property violation in
PathsToSubtask:

 data.input.1
 data.ready
 data.output.1

 plan.data.ready

The counterexample gives the prefix of an execution of
Complete_TripOrganiser where task
res:Reservation is triggered.

Domain-specific safety properties

In addition to checking generic properties of workflows,
our techniques can be used for properties that refer to the
particular workflow under analysis. Examples of such
properties include checking that: a certain sub-task is
triggered only after a number of other tasks are executed in
a specific order; if any sub-tasks aborts, then the only
possible outcome of the composite task is also abort; no
sub-task is triggered subsequently to any abort action in the
composite task. A detailed discussion of domain-specific
safety properties as well as liveness properties can be found
in [15].

4.3. Modularity and Abstraction

After checking thoroughly that a task satisfies its
requirements, the behaviour of the task may be abstracted
before re-using it in some other context. The only actions
that need to be visible by the context of a task are actions
related to its interfaces. Specifically, the interface of an
abstracted task consists of the input actions of its input sets
and the output actions of its output sets. The available
actions of input sets and output sets must also be exposed,
in order to be able to add notifications to and from the task
when it is introduced in a context. The LTS of the task is
then minimised. For example, the Complete_

TripOrganiser task is abstracted as follows.
Minimisation reduces the size of the LTS of the reservation
task from 76 down to 9 states.

minimal

|| AbstractTripOrganiser =

 (TripOrganiser)
 @ { data, abort, itinerary }.

5. Discussion and conclusions

The paper has proposed the modelling of workflow
schemas (using a popular notation) by means of Labelled
Transition Systems, as they are supported by the TRACTA
approach. TRACTA satisfies the fundamental requirements
that have been set in section 2.2. It is a mature method that
has been extensively used for model checking of complex
concurrent and distributed systems. It uses a solid automata-
based theory to allow exhaustive analysis on the static
model of a system, at design time.

The TRACTA approach is fully automated within the
LTSA toolkit. The algorithms employed for process

composition, action hiding and minimisation are
computationally efficient and scale well for real-world
workflow schemas. In addition, LTSA provides a graphical
representation of LTSs and an animation facility for
simulating the execution of the model. Diagnostic
information is presented in the form of counterexamples:
traces of execution that lead to violation of a desired
property. All these facilitate the use of the method by
designers that are not experts in formal methods. In fact,
with an automated production of the model from the
workflow schema definition (which is currently under
development), the workflow designers will not have to write
any FSP code. Generic properties could also be provided as
predefined options. Therefore, designers would only need to
express additional application-specific properties that they
may wish to analyse.

Our plans also involve facilitating the understanding of
the counterexamples returned by the LTSA tool, by
providing designers with custom animations on graphical
displays of the workflows. We have already experimented
extensively with domain-specific animations, and intend to
apply our experience to workflows [16].

The feature of TRACTA that makes it particularly suitable
for behaviour analysis of workflow schemas is
compositionality. TRACTA traditionally follows a
compositional approach to modelling and analysis, in order
to address the state explosion problem, which is inherent to
all exhaustive reachability analysis techniques. We have
exploited this feature, by making the models of tasks
context independent and re-usable. Therefore, designers can
check the model of their system in an incremental manner,
while the system is designed. Design errors can be spotted
early in the design and right in the components (tasks)
where they occur.

The lack of compositionality is the main weakness of the
Woflan system, according to its designers [17]. Woflan is a
verification tool that uses a special type of Petri-nets to
model and analyse the behaviour of workflow processes.
Errors in the model are reported in the form of “behaviour
error messages”, similar to our “counter-example traces”.
The main advantage of the system is the theoretical
robustness of the Petri-nets and the clear representation of
workflow state by token-based nets. However, the system
lacks a means for visual representation of the model. In
addition, Woflan can only handle systems with just up to
105 states. LTSA can handle LTSs with more than 106
states. Such LTSs typically represent systems that are
originally several orders of magnitude larger (before
minimisation is applied during the various levels of
composition).

Another approach for workflow verification has been
proposed by the Praxis project [18]. However, they focus
on graph analysis techniques to identify structural conflicts
in workflow schemas. The approach is bound to a specific

workflow notation and depends on special-purpose elements
in the notation (and-split, or-split, etc). It does not cater for
analysis against general safety properties and cannot be
easily adapted to other workflow notations.

There are a number of directions we are planning to
follow in order to extend the work presented in this paper.
The proposed modelling approach has been illustrated by
means of a specific workflow notation. This notation is part
of a proposal to OMG’s “UML Profile for EDOC” RFP [9].
In any case, the mapping is generic and can be easily
adapted for other approaches to workflow scheme
specification. To justify this claim, we are planning
mappings for other (proprietary) notations used by
commercial workflow management systems. In addition, the
proposed mapping has to be extended with a generic model
of recursive tasks (tasks that can trigger new instances of
their own type), a common pattern in business processes.

This paper introduces an approach for modelling and
analysis of workflow schemas, irrespectively of the
environment in which schemas are instantiated and
executed. Such models can be enriched with the behaviour
of system resources used for the enactment of workflow
instances. Analysis of the extended models can then ensure
that workflow specifications are consistent with the
constraints set by the execution environment. We are
currently investigating what are the required abstractions for
modelling system resources in this setting.

Acknowledgements

This work has been supported in part by ESPRIT LTR
Project C3DS (Project No. 24962) and by a BT funded
project on Analysis of Autonomous Agents. We gratefully
acknowledge our colleagues Jeff Kramer, Santosh
Shrivastava and Frederic Ranno for helpful discussions.

References

[1] Koulopoulos, T.M., The Workflow Imperative, New York:
Van Nostrand Reinhold 1995.

[2] Georgakopoulos, D., Hornick, M., and Sheth, A., An overview
of workflow management: from process modelling to
workflow automation infrastructure. International Journal on
Distributed and Parallel Databases. Vol. 3(2), April 1995: pp.
119-153.

[3] Wheater, S.M., Shrivastava, S.K., and Ranno, F. "A CORBA
Compliant Transactional Workflow System for Internet
Applications", in Proc. of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed
Processing. 1998, Lake District, UK

[4] Workflow-Management-Coalition, Workflow Handbook, ed.
P. Lawrence, New York: John Wiley and Sons 1997.

[5] Schal, T., Workflow Management for Process Organisations.
Lecture Notes in Computer Science. Vol. 1096, Berlin:
Springer Verlag 1996.

[6] Sheth, A.P., van de Aalst, W.M.P., and Arpinar, I.B.,
Processes Driving the Networked Economy. IEEE
Concurrency. Vol. 7(3), July - September 1999.

[7] van der Aalst, W.M.P., The Application of Petri-NEts to
Workflow Management. The Journal of Circuits, Systems and
Computers. Vol. 8(1) 1998: pp. 21-66.

[8] OMG, UML Profile for EDOC RFP, . 2000 1999.

[9] UML Profile for Enterprise Distribued Object Computing,
1999, Cooperative Research Centre for Enterprise Distributed
Systems Technology (DSTC).

[10] Magee, J. and Kramer, J., Concurrency: State Models & Java
Programs. Worldwide Series in Computer Science: John
Wiley & Sons 1999.

[11] Ranno, F., Shrivastava, S.K., and Wheater, S.M. "A
Language for Specifying the Composition of Reliable
Distributed Applications", in Proc. of the 18th International
Conference on Distributed Computing Systems (ICDCS-98).
1998, Amsterdam, The Netherlands

[12] Ranno, F., A language and toolkit for the specification,
execution and monitoring of dependable distributed
applications. PhD thesis. Department of Computing Science,
University of Newcastle upon Tyne. June 1999, Newcastle
upon Tyne.

[13] Giannakopoulou, D., Kramer, J., and Cheung, S.C.,
Analysing the Behaviour of Distributed Systems using Tracta.
Journal of Automated Software Engineering, special issue on
Automated Analysis of Software. Vol. 6(1), January 1999: pp.
7-35.

[14] Giannakopoulou, D., Magee, J., and Kramer, J. "Checking
Progress with Action Priority: Is it Fair?", in Proc. of the 7th
European Software Engineering Conference / 7th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’99). September 1999 Toulouse,
France. Springer, LNCS 1687. M.L. O. Nierstrasz, Ed

[15] Karamanolis, C., et al., Modelling and Analysis of Workflow
Processes, . September 1999, Department of Computing,
Imperial College: London.

[16] Magee, J., et al. "Graphical Animation of Behavior Models",
in Proc. of the 22nd International Conference on Software
Engineering (ICSE’ 2000). June 2000, Limerick, Ireland

[17] Verbeek, H.M.W., Basten, T., and van der Aalst, W.M.P.,
Diagnosing Workflow Processes using Woflan, 1999,
Eidhoven University of Technology: Eidhoven.

[18] Sadiq, W. and Orlowska, M. "Applying Graph Reduction
Techniques for Identifying Structural Conflicts in Process
Models", in Proc. of the 11th International Conference on
Advanced Information Systems Engineering (CAiSE ’99).
June 1999, Heidelberg, Germany. Springer-Verlag 1626, pp.
195-209

